

AMR TECHNICAL OVERVIEW

KARIUS TEST® WITH ANTIMICROBIAL RESISTANCE (AMR) MARKER DETECTION

BACKGROUND

Since 2018, the Karius Test has reported microbial species causing infectious disease based on agnostic metagenomic sequencing (mNGS) of microbial cell-free DNA (mcfDNA) in plasma specimens. As of September 2023, the Karius Test will also include automatic follow-on testing for 7 AMR markers associated with 4 classes of antimicrobial resistance across 18 AMR threat pathogens whenever one or more of these pathogens are reported by the Karius Test (Table 1). Species identification will continue to be reported one day after specimen receipt at Karius, and the results of AMR will be reported as an addendum to the original report approximately 24 hours later. Results are intended to guide antimicrobial management within appropriate clinical context.

TABLE 1. TARGETED BACTERIA AND ASSOCIATED AMR MARKERS

Do ete visus	AMR Marker						
Bacterium	SCCmec	mecA	mecC	vanA	vanB	CTX-M	KPC
Methicillin-resistant Staphyloco	occi						
Staphylococcus aureus	+	+	+				
Staphylococcus epidermidis		+	+				
Staphylococcus lugdunensis		+	+				
Vancomycin-resistant Enteroco	occi						
Enterococcus faecalis				+	+		
Enterococcus faecium				+	+		
Carbapenemase and extended	spectrum	beta-lacta	mase prod	lucing bac	teria		
Enterobacter cloacae						+	+
Escherichia coli						+	+
Klebsiella aerogenes						+	+
Klebsiella pneumoniae						+	+
Klebsiella oxytoca						+	+
Proteus mirabilis						+	+
Proteus vulgaris						+	+
Salmonella bongori						+	+
Salmonella enterica						+	+
Serratia marcescens						+	+
Pseudomonas aeruginosa						+	+
Acinetobacter baumannii						+	+
Acinetobacter calcoaceticus						+	+

ANTIMICROBIAL RESISTANCE GENES

SCCmec/mecA/mecC: The staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element bearing the mecA and/or mecC gene which encodes for methicillin resistance. Methicillin-resistant Staphylococcus aureus (MRSA) harboring the mecA or mecC gene have alterations of penicillin-binding protein (PBP2a) leading to low affinity for beta-lactams and resistance to most beta-lactam antibiotics.¹⁻²

vanA/vanB: Vancomycin resistance in *Enterococcus* spp. is mediated by the *vanA* and/or *vanB* gene clusters which encode for modifications of cell wall peptidoglycan precursors which serve as the drug binding site. Vancomycin resistant *Enterococcus* (VRE) is most commonly *Enterococcus faecium* and less frequently *Enterococcus faecalis*. *Enterococci* carrying the *vanA* or *vanB* genes are highly resistant to vancomycin, and those harboring *vanA* are also resistant to other glycopeptides.³

CTX-M: The bla_{CTX-M} gene found in gram-negative bacteria encodes for production of CTX-M extended-spectrum beta-lactamase (ESBL), which hydrolyzes and inactivates most beta-lactams. CTX-M ESBL is most commonly found in *Enterobacterales*, however can also be present in non-enteric gram-negative bacteria such as *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. ESBL-producing bacteria are resistant to penicillins, aztreonam, and most cephalosporins with the exception of the cephamycins.⁴⁻⁵

KPC: The bla_{KPC} gene found in gram-negative bacteria confers resistance to almost all beta-lactam antibiotics by production of *Klebsiella pneumoniae* carbapenamase (KPC). The KPC enzyme hydrolyzes and inactivates most beta-lactam antibiotics including carbapenems. Variants of the bla_{KPC} gene are frequently carried on mobile genetic elements and can spread resistance easily between different genera/species, including *Enterobacterales*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa*.⁴⁻⁵

TESTING METHODS

Plasma specimens undergo optimized DNA extraction, library preparation, and enrichment, followed by mNGS. Sequencing reads are aligned to a database of curated reference genomes and compared to real-time and historical controls to identify and quantify pathogens in each specimen.

The presence or absence of SCC*mec* in *S. aureus* is determined by testing for 44 SCC*mec* variants and 4 non-*mec* SCC variants. Resulted Karius Tests that report one or more of the 18 targeted bacteria identified, with sufficient specimen volume for follow-on testing, and that meet additional success criteria, enter the AMR gene detection workflow. In this workflow, mcfDNA is extracted from plasma and is subjected to targeted sequencing using more than 300 primers to amplify ultrashort mcfDNA fragments from 6 AMR target genes, several species-specific housekeeping genes, and quality control oligos. Amplicons are aligned to AMR markers and synthetic sequence spike-ins. The number of unique templates is calculated and used as input into the AMR caller which also integrates information about pathogen abundance, reaction efficiency and abundance of housekeeping genes to output AMR results.

ANALYTICAL VALIDATION

Analytical validation showed high precision, inclusivity and exclusivity as demonstrated in Table 2.

TABLE 2. ANALYTICAL VALIDATION PERFORMANCE SUMMARY

Metric	Definition	Estimate	Note
Precision	Reproducibility of results within and across runs	100%	
Inclusivity	Sensitivity to detect variants of the AMR genes	100%*	Assessed in-silico [#] using gene sequences from CARD AMR database
Exclusivity	Specificity to avoid cross- reactivity with other DNA sequences	100%	Assessed in-silico [#] using bacterial, fungal, and archaeal reference genomes

CARD = Comprehensive Antimicrobial Resistance Database

#Comprised of 50 samples per AMR gene

^{*}CTX-M variants are highly divergent from each other, which has limits for our targeted amplification approach; expected to target 67%-75% of CTX-M variants in clinical population

CLINICAL VALIDATION

A total of 115 patient plasma samples with orthogonal culture and phenotypic antimicrobial susceptibility test results that had one or more of the 18 target pathogens detected by the Karius Test were included in the clinical validation study. Orthogonal data were collected from 7 study sites and included a wide variety of specimen types and 12 (66.7%) of the 18 target pathogens. Details on orthogonal data and isolated bacterial pathogens are shown in **Figures 1** and **2**, below. Clinical test performance results are shown in **Table 3**. Resolution of false-negative results was performed by further adjudication based on pathogen susceptibility and known phenotypic expression of alternative mechanisms of resistance. Results of resolutions are shown in **Table 4** and **Table 5**.

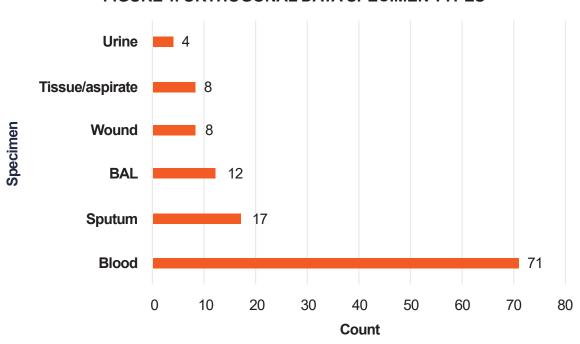
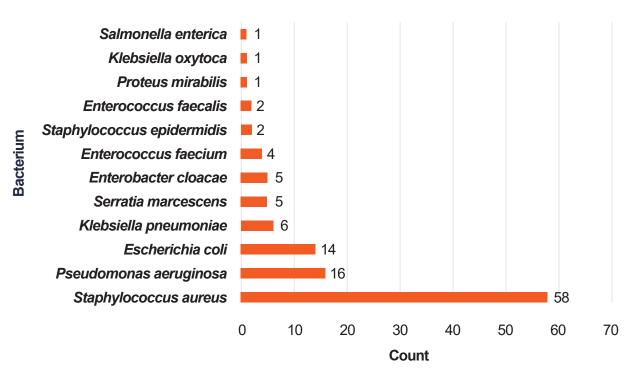



FIGURE 1. ORTHOGONAL DATA SPECIMEN TYPES

TABLE 3. CLINICAL VALIDATION PERFORMANCE SUMMARY*

			Karius Test AMR Performance ^a				
Species	Drug / Class	AMR Marker	PPA	NPA	Accuracy	Total Yield	
S. aureus, S. epidermidis (n=60)	Methicillin	SCCmec, mecA, mecC	19/20 (95.0%) [75.19%- 99.9%]	21/22 (95.4%) [77.1%-99.9%]	40/42 (95.2%) [83.8%-99.4%]	42/60#(70.0%) [56.8%-81.1%]	
E. faecium, E. faecalis (n=6)	Vancomycin	vanA, vanB	3/3 (100%) [29.2%-100%]	2/2 (100%) [15.8%-100%]	5/5 (100%) [47.8%-100%]	5/6 (83.3%) [35.8%-99.5%]	
Gram-nega- tive bacteria (n=49)%	Extend- ed-spectrum beta-lactams	<i>bla</i> _{CTX-M}	5/9 (55.5%) [21.2%-86.3%]	26/26 (100%) [86.7%-100%]	31/35 (88.5%) [73.2-96.8%]	35/49 (71.4%) [56.7%-83.4%]	
	Carbapenems	<i>bla</i> _{KPC}	0/2 (0%) [0%- 84.2%]	23/23 (100%) [85.1%-100%]	23/25 (92.0%) [73.9%-99.0%]	25/44 (56.8) [41.0%-71.6%)	

PPA=positive percent agreement; NPA= negative percent agreement

TABLE 4. RESOLUTION OF BLA_{CTX-M} FALSE NEGATIVE DETECTIONS

Lab no.	Category	Bacterium	Phenotype ^a	Genotype	Resolution
DK-27435	<i>bla</i> _{CTX-M} FN	E. cloacae complex	Cefepime - S Ceftazidime - R Ceftriaxone - R	Not available	TN
LB-70865	<i>bla</i> _{CTX-M} FN	E. cloacae complex	Aztreonam - R Cefepime - R Ceftriaxone - R	Not available	FN
LB-75775	<i>bla</i> _{CTX-M} FN	E. cloacae complex	Cefepime - S Ceftriaxone - R	bla _{CTX-M} not detected by Verigene® BC-GN test	TN
LB-77110	<i>bla</i> _{CTX-M} FN	E. coli	Cefepime - S Ceftriaxone - R	Not available	FN

S= susceptible; R= resistant

Following resolution of false negative result discrepancies, the PPA of blaCTX-M producing gram-negatives increased from 55.5% to 71.4%.

^{*}No mecC, vanB or $\textit{bla}_{\text{KPC}}$ were detected.

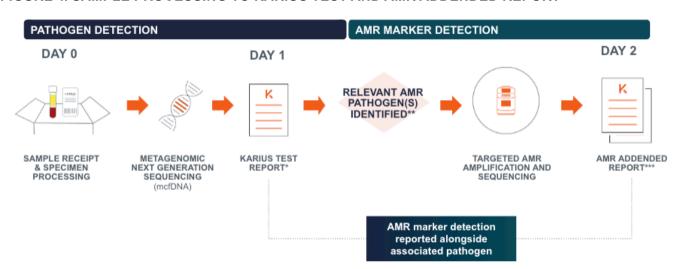
[#]SCCmec and mecA combined

 $^{^{8}\!44}$ of these samples passed criteria for $\textit{bla}_{\text{KPC}}$ detection.

[&]amp;Clinical validation performance may differ from what is seen in production because metrics may be study-dependent.

^aESBL and AmpC β-lactamases can be distinguished phenotypically in *E. cloacae* complex based on differential susceptibility to cefepime. Cefepime is usually not hydrolyzed by AmpC β-lactamases.⁶

TABLE 5. RESOLUTION OF $bla_{\rm KPC}$ FALSE NEGATIVE DETECTIONS


Lab no.	Category	Bacterium	Phenotype ^a	Genotype	Resolution
LB-66877	<i>bla</i> _{KPC} FN	P. aeruginosaª	Meropenem – R/S	Not available	TN
LB-68049	bla _{KPC} FN (bla _{CTX-M} TP)	E. coli ^b	Ertapenem – R Imipenem – S Meropenem - R	Not available	FN

S= susceptible; R= resistant

AMR WORKFLOW

Reporting of AMR results occurs one day after microorganism identification results by the Karius Test (**Figure 4**) via an AMR Addended Report, with the exception of SCC*mec* results, which are reported the same day as microorganism tests results on the Karius Test Report.

FIGURE 4. SAMPLE PROCESSING TO KARIUS TEST AND AMR ADDENDED REPORT

* Karius Test Report Notes

- 1. >85% of specimens received by 8:30 AM (PT) Monday through Saturday are reported the next day
- 2. When S. aureus is detected, SCCmec AMR marker result may also be provided at this time; indeterminate results will undergo testing for mecA/mecC

AMR Marker Detection Notes

- **If specimen volume is sufficient for testing and additional analytical conditions are met
- ***Samples with Karius Test reported on Sunday would have AMR marker detection addended on Tuesday

^aThis plasma sample was associated with two *P. aeruginosa* strains (sputum and BALF), of which only one was carbapenem-resistant (sputum). The most resistant strain was selected to label the specimen, but the strain from the BALF was deemed more likely to be associated with disease.

^bThe failure to detect a bla_{spec} positive strain is likely to represent a combination of the small sample size, rarity of carbapenem resistance, and diverse mechanisms of carbapenem resistance⁷. This discrepancy was unable to be resolved.

ANTIMICROBIAL RESISTANCE MARKER INTERPRETATION*

AMR Marker	DETECTED	NOT DETECTED	INDETERMINATE	
SCCmec, mecA, mecC¹	Consistent with resistance to methicillin and all other penicillins, most cephalosporins, and carbapenems	Consistent with susceptibility to methicillin and other β-lactamase resistant penicillins, cephalosporins, and carbapenems	Antimicrobial susceptibility or resistance of the microorganism cannot be determined. Causes of an indeterminate result include: insufficient sequence	
vanA³	Consistent with resistance to vancomycin and other glycopeptides	Consistent with susceptibility to vancomycin and other	data, ambiguous linkage to specific species due to the presence of confounding microorganisms, insufficient species specific markers	
vanB³	Consistent with resistance to vancomycin	glycopeptides	observed, or ambiguous/ insufficient AMR marker abundance observed	
CTX-M⁴	Consistent with resistance to extended-spectrum and most other cephalosporins, penicillins, and aztreonam	Unable to determine susceptibility or resistance to extended spectrum cephalosporins and the other drug classes due to multiple other mechanisms of resistance		
KPC⁴	Consistent with resistance to carbapenems, penicillins, cephalosporins, and aztreonam	Unable to determine susceptibility or resistance to carbapenems and the other drug classes to the left due to other potential mechanisms of resistance		

^{*}Antimicrobial resistance can occur via multiple mechanisms including a broad spectrum of beta-lactamases, target site modifications, decreased cell permeability by porin mutations, and/or efflux pumps⁵ Not all mechanisms can be detected with the Karius Test. A "Not detected" result for a genetic marker of antimicrobial resistance may not indicate susceptibility to the associated antimicrobial drugs or drug classes. A "Detected" result for a genetic marker of antimicrobial resistance may not be definitively linked to the microorganism(s) detected in some cases. Confirmation of in-vitro susceptibility is recommended.

REFERENCES:

- 1. Lakhundi S, Zhang K. Methicillin-Resistant *Staphylococcus aureus*: Molecular Characterization, Evolution, and Epidemiology. *Clin Microbiol Rev.* 2018 Sep 12;31(4):e00020-18.
- 2. Paterson GK, et al. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014 Jan;22(1):42-7.
- 3. Cetinkaya Y, et al. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000 Oct;13(4):686-707.
- 4. Tamma PD, et al. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis. 2022 Aug 25;75(2):187-212.
- 5. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016 Apr;4(2):10.1128
- 6. Tamma PD, et al.; Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrugresistant World. Clin Infect Dis. 2019 Sep 27;69(8):1446-1455
- 7. Castanheira M, et al. Prevalence of carbapenemase genes among carbapenem-nonsusceptible *Enterobacterales* collected in US hospitals in a five-year period and activity of ceftazidime/avibactam and comparator agents. *JAC Antimicrob Resist*. 2022 Sep 30;4(5):dlac098

